CODEDRAGON ㆍDevelopment/Database
An Introduction to Statistical Learning site
http://www-bcf.usc.edu/~gareth/ISL/
Introduction to Statistical Learning-Youtube
An Introduction to Statistical Learning
목차
Preface vii
1 Introduction 1
2 Statistical Learning 15
2.1 What Is Statistical Learning? . . . . . . . . . . . . . . . . . 15
2.1.1 Why Estimate f? . . . . . . . . . . . . . . . . . . . . 17
2.1.2 How Do We Estimate f? . . . . . . . . . . . . . . . 21
2.1.3 The Trade-Off Between Prediction Accuracy
and Model Interpretability . . . . . . . . . . . . . . 24
2.1.4 Supervised Versus Unsupervised Learning . . . . . . 26
2.1.5 Regression Versus Classification Problems . . . . . . 28
2.2 AssessingModel Accuracy . . . . . . . . . . . . . . . . . . . 29
2.2.1 Measuring the Quality of Fit . . . . . . . . . . . . . 29
2.2.2 The Bias-VarianceTrade-Off . . . . . . . . . . . . . 33
2.2.3 The Classification Setting . . . . . . . . . . . . . . . 37
2.3 Lab: Introduction to R . . . . . . . . . . . . . . . . . . . . . 42
2.3.1 Basic Commands . . . . . . . . . . . . . . . . . . . . 42
2.3.2 Graphics . . . . . . . . . . . . . . . . . . . . . . . . 45
2.3.3 Indexing Data . . . . . . . . . . . . . . . . . . . . . 47
2.3.4 Loading Data . . . . . . . . . . . . . . . . . . . . . . 48
2.3.5 Additional Graphical and Numerical Summaries . . 49
2.4 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
3 Linear Regression 59
3.1 Simple Linear Regression . . . . . . . . . . . . . . . . . . . 61
3.1.1 Estimating the Coefficients . . . . . . . . . . . . . . 61
3.1.2 Assessing the Accuracy of the Coefficient
Estimates . . . . . . . . . . . . . . . . . . . . . . . . 63
3.1.3 Assessing the Accuracy of theModel . . . . . . . . . 68
3.2 Multiple Linear Regression . . . . . . . . . . . . . . . . . . 71
3.2.1 Estimating the Regression Coefficients . . . . . . . . 72
3.2.2 Some Important Questions . . . . . . . . . . . . . . 75
3.3 Other Considerations in the Regression Model . . . . . . . . 82
3.3.1 Qualitative Predictors . . . . . . . . . . . . . . . . . 82
3.3.2 Extensions of the LinearModel . . . . . . . . . . . . 86
3.3.3 Potential Problems . . . . . . . . . . . . . . . . . . . 92
3.4 TheMarketing Plan . . . . . . . . . . . . . . . . . . . . . . 102
3.5 Comparison of Linear Regression with K-Nearest
Neighbors . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104
3.6 Lab: Linear Regression . . . . . . . . . . . . . . . . . . . . . 109
3.6.1 Libraries . . . . . . . . . . . . . . . . . . . . . . . . . 109
3.6.2 Simple Linear Regression . . . . . . . . . . . . . . . 110
3.6.3 Multiple Linear Regression . . . . . . . . . . . . . . 113
3.6.4 Interaction Terms . . . . . . . . . . . . . . . . . . . 115
3.6.5 Non-linear Transformations of the Predictors . . . . 115
3.6.6 Qualitative Predictors . . . . . . . . . . . . . . . . . 117
3.6.7 Writing Functions . . . . . . . . . . . . . . . . . . . 119
3.7 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120
4 Classification 127
4.1 An Overview of Classification . . . . . . . . . . . . . . . . . 128
4.2 Why Not Linear Regression? . . . . . . . . . . . . . . . . . 129
4.3 Logistic Regression . . . . . . . . . . . . . . . . . . . . . . . 130
4.3.1 The LogisticModel . . . . . . . . . . . . . . . . . . . 131
4.3.2 Estimating the Regression Coefficients . . . . . . . . 133
4.3.3 Making Predictions . . . . . . . . . . . . . . . . . . . 134
4.3.4 Multiple Logistic Regression. . . . . . . . . . . . . . 135
4.3.5 Logistic Regression for >2 Response Classes . . . . . 137
4.4 Linear Discriminant Analysis . . . . . . . . . . . . . . . . . 138
4.4.1 Using Bayes' Theorem for Classification . . . . . . . 138
4.4.2 Linear Discriminant Analysis for p=1 . . . . . . . . 139
4.4.3 Linear Discriminant Analysis for p >1 . . . . . . . . 142
4.4.4 Quadratic Discriminant Analysis . . . . . . . . . . . 149
4.5 A Comparison of Classification Methods . . . . . . . . . . . 151
4.6 Lab: Logistic Regression, LDA, QDA, and KNN . . . . . . 154
4.6.1 The StockMarket Data . . . . . . . . . . . . . . . . 154
4.6.2 Logistic Regression . . . . . . . . . . . . . . . . . . . 156
4.6.3 Linear Discriminant Analysis . . . . . . . . . . . . . 161
4.6.4 Quadratic Discriminant Analysis . . . . . . . . . . . 163
4.6.5 K-NearestNeighbors . . . . . . . . . . . . . . . . . . 163
4.6.6 An Application to Caravan Insurance Data . . . . . 165
4.7 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . 168
5 Resampling Methods 175
5.1 Cross-Validation . . . . . . . . . . . . . . . . . . . . . . . . 176
5.1.1 The Validation Set Approach . . . . . . . . . . . . . 176
5.1.2 Leave-One-Out Cross-Validation . . . . . . . . . . . 178
5.1.3 k-Fold Cross-Validation . . . . . . . . . . . . . . . . 181
5.1.4 Bias-Variance Trade-Off for k-Fold
Cross-Validation . . . . . . . . . . . . . . . . . . . . 183
5.1.5 Cross-Validation on Classification Problems . . . . . 184
5.2 The Bootstrap . . . . . . . . . . . . . . . . . . . . . . . . . 187
5.3 Lab: Cross-Validation and the Bootstrap . . . . . . . . . . . 190
5.3.1 The Validation Set Approach . . . . . . . . . . . . . 191
5.3.2 Leave-One-Out Cross-Validation . . . . . . . . . . . 192
5.3.3 k-Fold Cross-Validation . . . . . . . . . . . . . . . . 193
5.3.4 The Bootstrap . . . . . . . . . . . . . . . . . . . . . 194
5.4 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . 197
6 Linear Model Selection and Regularization 203
6.1 Subset Selection . . . . . . . . . . . . . . . . . . . . . . . . 205
6.1.1 Best Subset Selection . . . . . . . . . . . . . . . . . 205
6.1.2 Stepwise Selection . . . . . . . . . . . . . . . . . . . 207
6.1.3 Choosing the OptimalModel . . . . . . . . . . . . . 210
6.2 ShrinkageMethods . . . . . . . . . . . . . . . . . . . . . . . 214
6.2.1 Ridge Regression . . . . . . . . . . . . . . . . . . . . 215
6.2.2 The Lasso . . . . . . . . . . . . . . . . . . . . . . . . 219
6.2.3 Selecting the Tuning Parameter . . . . . . . . . . . . 227
6.3 Dimension ReductionMethods . . . . . . . . . . . . . . . . 228
6.3.1 Principal Components Regression . . . . . . . . . . . 230
6.3.2 Partial Least Squares . . . . . . . . . . . . . . . . . 237
6.4 Considerations in High Dimensions . . . . . . . . . . . . . . 238
6.4.1 High-Dimensional Data . . . . . . . . . . . . . . . . 238
6.4.2 What Goes Wrong in High Dimensions? . . . . . . . 239
6.4.3 Regression in High Dimensions . . . . . . . . . . . . 241
6.4.4 Interpreting Results in High Dimensions . . . . . . . 243
6.5 Lab 1: Subset Selection Methods . . . . . . . . . . . . . . . 244
6.5.1 Best Subset Selection . . . . . . . . . . . . . . . . . 244
6.5.2 Forward and Backward Stepwise Selection . . . . . . 247
6.5.3 Choosing Among Models Using the Validation
Set Approach and Cross-Validation . . . . . . . . . . 248
6.6 Lab 2: Ridge Regression and the Lasso . . . . . . . . . . . . 251
6.6.1 Ridge Regression . . . . . . . . . . . . . . . . . . . . 251
6.6.2 The Lasso . . . . . . . . . . . . . . . . . . . . . . . . 255
6.7 Lab 3: PCR and PLS Regression . . . . . . . . . . . . . . . 256
6.7.1 Principal Components Regression . . . . . . . . . . . 256
6.7.2 Partial Least Squares . . . . . . . . . . . . . . . . . 258
6.8 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . 259
7 Moving Beyond Linearity 265
7.1 PolynomialRegression . . . . . . . . . . . . . . . . . . . . . 266
7.2 Step Functions . . . . . . . . . . . . . . . . . . . . . . . . . 268
7.3 Basis Functions . . . . . . . . . . . . . . . . . . . . . . . . . 270
7.4 Regression Splines . . . . . . . . . . . . . . . . . . . . . . . 271
7.4.1 Piecewise Polynomials . . . . . . . . . . . . . . . . . 271
7.4.2 Constraints and Splines . . . . . . . . . . . . . . . . 271
7.4.3 The Spline Basis Representation . . . . . . . . . . . 273
7.4.4 Choosing the Number and Locations
of the Knots . . . . . . . . . . . . . . . . . . . . . . 274
7.4.5 Comparison to Polynomial Regression . . . . . . . . 276
7.5 Smoothing Splines . . . . . . . . . . . . . . . . . . . . . . . 277
7.5.1 An Overview of Smoothing Splines . . . . . . . . . . 277
7.5.2 Choosing the Smoothing Parameter λ . . . . . . . . 278
7.6 Local Regression . . . . . . . . . . . . . . . . . . . . . . . . 280
7.7 Generalized AdditiveModels . . . . . . . . . . . . . . . . . 282
7.7.1 GAMs for Regression Problems . . . . . . . . . . . . 283
7.7.2 GAMs for Classification Problems . . . . . . . . . . 286
7.8 Lab: Non-linearModeling . . . . . . . . . . . . . . . . . . . 287
7.8.1 Polynomial Regression and Step Functions . . . . . 288
7.8.2 Splines . . . . . . . . . . . . . . . . . . . . . . . . . . 293
7.8.3 GAMs . . . . . . . . . . . . . . . . . . . . . . . . . . 294
7.9 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . 297
8 Tree-Based Methods 303
8.1 The Basics of Decision Trees . . . . . . . . . . . . . . . . . 303
8.1.1 Regression Trees . . . . . . . . . . . . . . . . . . . . 304
8.1.2 Classification Trees . . . . . . . . . . . . . . . . . . . 311
8.1.3 Trees Versus LinearModels . . . . . . . . . . . . . . 314
8.1.4 Advantages and Disadvantages of Trees . . . . . . . 315
8.2 Bagging, Random Forests, Boosting . . . . . . . . . . . . . 316
8.2.1 Bagging . . . . . . . . . . . . . . . . . . . . . . . . . 316
8.2.2 Random Forests . . . . . . . . . . . . . . . . . . . . 320
8.2.3 Boosting . . . . . . . . . . . . . . . . . . . . . . . . . 321
8.3 Lab: Decision Trees . . . . . . . . . . . . . . . . . . . . . . . 324
8.3.1 Fitting Classification Trees . . . . . . . . . . . . . . 324
8.3.2 Fitting RegressionTrees . . . . . . . . . . . . . . . . 327
8.3.3 Bagging and Random Forests . . . . . . . . . . . . . 328
8.3.4 Boosting . . . . . . . . . . . . . . . . . . . . . . . . . 330
8.4 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . 332
9 Support Vector Machines 337
9.1 MaximalMargin Classifier . . . . . . . . . . . . . . . . . . . 338
9.1.1 What Is a Hyperplane? . . . . . . . . . . . . . . . . 338
9.1.2 Classification Using a Separating Hyperplane . . . . 339
9.1.3 TheMaximalMargin Classifier . . . . . . . . . . . . 341
9.1.4 Construction of the Maximal Margin Classifier . . . 342
9.1.5 The Non-separable Case . . . . . . . . . . . . . . . . 343
9.2 Support Vector Classifiers . . . . . . . . . . . . . . . . . . . 344
9.2.1 Overview of the Support Vector Classifier . . . . . . 344
9.2.2 Details of the Support Vector Classifier . . . . . . . 345
9.3 Support Vector Machines . . . . . . . . . . . . . . . . . . . 349
9.3.1 Classification with Non-linear Decision
Boundaries . . . . . . . . . . . . . . . . . . . . . . . 349
9.3.2 The Support Vector Machine . . . . . . . . . . . . . 350
9.3.3 An Application to the Heart Disease Data . . . . . . 354
9.4 SVMs withMore than Two Classes . . . . . . . . . . . . . . 355
9.4.1 One-Versus-One Classification. . . . . . . . . . . . . 355
9.4.2 One-Versus-All Classification . . . . . . . . . . . . . 356
9.5 Relationship to Logistic Regression . . . . . . . . . . . . . . 356
9.6 Lab: Support Vector Machines . . . . . . . . . . . . . . . . 359
9.6.1 Support Vector Classifier . . . . . . . . . . . . . . . 359
9.6.2 Support Vector Machine . . . . . . . . . . . . . . . . 363
9.6.3 ROC Curves . . . . . . . . . . . . . . . . . . . . . . 365
9.6.4 SVMwithMultiple Classes . . . . . . . . . . . . . . 366
9.6.5 Application to Gene Expression Data . . . . . . . . 366
9.7 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . 368
10 Unsupervised Learning 373
10.1 The Challenge of Unsupervised Learning . . . . . . . . . . . 373
10.2 Principal Components Analysis . . . . . . . . . . . . . . . . 374
10.2.1 What Are Principal Components? . . . . . . . . . . 375
10.2.2 Another Interpretation of Principal Components . . 379
10.2.3 More on PCA . . . . . . . . . . . . . . . . . . . . . . 380
10.2.4 Other Uses for Principal Components . . . . . . . . 385
10.3 ClusteringMethods . . . . . . . . . . . . . . . . . . . . . . . 385
10.3.1 K-Means Clustering . . . . . . . . . . . . . . . . . . 386
10.3.2 Hierarchical Clustering . . . . . . . . . . . . . . . . . 390
10.3.3 Practical Issues in Clustering . . . . . . . . . . . . . 399
10.4 Lab 1: Principal Components Analysis . . . . . . . . . . . . 401
10.5 Lab 2: Clustering . . . . . . . . . . . . . . . . . . . . . . . . 404
10.5.1 K-Means Clustering . . . . . . . . . . . . . . . . . . 404
10.5.2 Hierarchical Clustering . . . . . . . . . . . . . . . . . 406
10.6 Lab 3: NCI60 Data Example . . . . . . . . . . . . . . . . . 407
10.6.1 PCA on the NCI60 Data . . . . . . . . . . . . . . . 408
10.6.2 Clustering the Observations of the NCI60 Data . . . 410
10.7 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . 413
Index 419
직접다운로드
'Development > Database' 카테고리의 다른 글
SQLite 실행 (0) | 2015.01.18 |
---|---|
DAP, DAsP, ADP, ADsP, SQLP, SQLD, 데이터 자격시험, 데이터베이스 자격시험 (0) | 2014.12.20 |
[SQLite] SQLite 3.8.7.2 Package (0) | 2014.12.17 |
SQLite Download & 설치 (0) | 2014.12.11 |
SQLite (0) | 2014.12.06 |